21 research outputs found

    Iso-osmotic regulation of nitrate accumulation in lettuce (Lactuca sativa L.)

    Get PDF
    Concerns about possible health hazards arising from human consumption of lettuce and other edible vegetable crops with high concentrations of nitrate have generated demands for a greater understanding of processes involved in its uptake and accumulation in order to devise more sustainable strategies for its control. This paper evaluates a proposed iso-osmotic mechanism for the regulation of nitrate accumulation in lettuce (Lactuca sativa L.) heads. This mechanism assumes that changes in the concentrations of nitrate and all other endogenous osmotica (including anions, cations and neutral solutes) are continually adjusted in tandem to minimise differences in osmotic potential of the shoot sap during growth, with these changes occurring independently of any variations in external water potential. The hypothesis was tested using data from six new experiments, each with a single unique treatment comprising a separate combination of light intensity, N source (nitrate with or without ammonium) and nitrate concentration carried out hydroponically in a glasshouse using a butterhead lettuce variety. Repeat measurements of plant weights and estimates of all of the main soluble constituents (nitrate, potassium, calcium, magnesium, organic anions, chloride, phosphate, sulphate and soluble carbohydrates) in the shoot sap were made at intervals from about 2 weeks after transplanting until commercial maturity, and the data used to calculate changes in average osmotic potential in the shoot. Results showed that nitrate concentrations in the sap increased when average light levels were reduced by between 30 and 49 % and (to a lesser extent) when nitrate was supplied at a supra-optimal concentration, and declined with partial replacement of nitrate by ammonium in the external nutrient supply. The associated changes in the proportions of other endogenous osmotica, in combination with the adjustment of shoot water content, maintained the total solute concentrations in shoot sap approximately constant and minimised differences in osmotic potential between treatments at each sampling date. There was, however, a gradual increase in osmotic potential (ie a decline in total solute concentration) over time largely caused by increases in shoot water content associated with the physiological and morphological development of the plants. Regression analysis using normalised data (to correct for these time trends) showed that the results were consistent with a 1:1 exchange between the concentrations of nitrate and the sum of all other endogenous osmotica throughout growth, providing evidence that an iso-osmotic mechanism (incorporating both concentration and volume regulation) was involved in controlling nitrate concentrations in the shoot

    Magnetic Resonance Elastography Shear Wave Velocity Correlates with Liver Fibrosis and Hepatic Venous Pressure Gradient in Adults with Advanced Liver Disease

    Get PDF
    Background. Portal hypertension, an elevation in the hepatic venous pressure gradient (HVPG), can be used to monitor disease progression and response to therapy in cirrhosis. Since obtaining HVPG measurements is invasive, reliable noninvasive methods of assessing portal hypertension are needed. Methods. Noninvasive markers of fibrosis, including magnetic resonance elastography (MRE) shear wave velocity, were correlated with histologic fibrosis and HVPG measurements in hepatitis C (HCV) and/or HIVinfected patients with advanced liver disease enrolled in a clinical trial of treatment with simtuzumab, an anti-LOXL2 antibody. Results. This exploratory analysis includes 23 subjects: 9 with HCV monoinfection, 9 with HIV and HCV, and 5 with HIV and nonalcoholic steatohepatitis. Median Ishak fibrosis score was 4 (range 1-6); 11 subjects (48%) had cirrhosis. Median HVPG was 6 mmHg (range 3-16). Liver stiffness measured by MRE correlated with HVPG ( = 0.64, = 0.01), histologic fibrosis score ( = 0.71, = 0.004), noninvasive fibrosis indices, including APRI ( = 0.81, < 0.001), and soluble LOXL2 ( = 0.82, = 0.001). On stepwise multivariate regression analysis, MRE was the only variable independently associated with HVPG ( 2 = 0.377, = 0.02). Conclusions. MRE of the liver correlated independently with HVPG. MRE is a valid noninvasive measure of liver disease severity and may prove to be a useful tool for noninvasive portal hypertension assessment. Trial Registration Number. This trial is registered with NCT01707472

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging

    Review of Journal of Cardiovascular Magnetic Resonance 2013

    Full text link

    Alterations of mononuclear inflammatory cells, CD4/CD8+ T cells, interleukin 1β, and tumour necrosis factor α in the bronchoalveolar lavage fluid, peripheral blood, and skin of patients with systemic sclerosis

    No full text
    Background: Systemic sclerosis (SSc) is a multisystem disease with underlying immune mechanisms. Aims: To investigate the clinicopathological characteristics of the lesions; immunological alterations in the bronchoalveolar lavage fluid (BALF), peripheral blood, and skin; and correlations between the clinicopathological characteristics and immunological alterations in SSc. Materials/Methods: Skin biopsies, BALF, and peripheral blood samples were obtained from 19 patients (18 women, one man) with SSc and six age and sex matched healthy controls (HCs). Mononuclear inflammatory cells (MICs), CD4/CD8 cells, tumour necrosis factor α (TNFα), and interleukin 1β (IL1-1β) concentrations were examined in all samples using histological methods, enzyme linked immunosorbent assay, and immunoperoxidase staining. Results: The mean (SD) age of the patients with SSc was 34.8 (2.6) years. Proteinuria, positive rheumatoid factor, and C reactive protein were seen in 15.8%, 26.3%, and 26.3% of patients, respectively. Compared with HCs, there were significantly higher: total MICs (macrophages, lymphocytes), neutrophils, and eosinophils in BALF, blood, and skin (all p<0.05); cytokine concentrations in BALF (TNFα, p<0.001; IL-1, p<0.01) and peripheral blood (p<0.01 and p<0.05); and CD8/CD4+ T cells in peripheral blood (p<0.05). Compared with HCs, lesional skin had significantly higher histiocyte cell counts (p<0.05), lower lymphocyte counts (p<0.05), and higher CD4/CD8 ratios (p<0.001). There were significant correlations between cytokine concentrations and CD8+ T cells and forced vital capacity (p<0.001 and p<0.01, respectively). Conclusions: MICs, CD4/CD8+ cells, and cytokines are altered in SSc. These alterations correlated with the underlying disease process and therefore may have pathogenic, modulatory, and potential prognostic roles in SSc
    corecore